1.先确定你要移植的操作系统是uClinux还是GNU/LINUX
2.确定你要移植的硬件CPU类型,假定是ARM
3.装LINUX操作系统
4.在网上下载ARM-LINUX的交叉编译工具链,建立软硬件环境(如:用JTAG代理或者Jfash工具来烧写)
5.移植U-BOOT或者vivi-boot之类
6.移植LINUX内核(包含驱动)
7.移植busybox
8.称植或编写应用程序
一个典型的桌面Linux系统包括3个主要的软件层---linux内核、C库和应用程序代码。
内核是唯一可以完全控制硬件的层,内核驱动程序代表应用程序与硬件之间进行会话。内核之上是C库,负责把POSIX API转换为内核可以识别的形式,然后调用内核,从应用程序向内核传递参数。应用程序依靠驱动内核来完成特定的任务。
在设计嵌入式应用的时候,可以不按照这种层次,应用程序越过C库直接和内核会话,或者把应用和内核捆绑在一起,甚至可以把应用写为内核的一个线程,在内核中运行,虽然这样在移植上带来了困难,但考虑嵌入式系统对尺寸要求小的特点,是完全可行的。不过我们使用三层软件结构的模式来学习嵌入式linux将会是我们认识更清晰,简单可行并使应用具有弹性。
快速入门
最简单的建立嵌入式Linux应用的方法就是从我们使用的桌面Linux入手,安装一个喜爱的版本,把我们的某个应用作为初始化的一部分,框架就算完成了。
当然,嵌入式linux应用远比我们的桌面版本功能简单专一,它也许就是一个用于足彩的终端机,或是一个数码音频播放器,这些系统除了使用嵌入式CPU外,仅仅再需要一个串口,网口等少量的输入输出接口就可以完成它们特定的应用了。
在软件上,它可以按照三层的概念由内核装载器,定制的内核和较少的为特定任务设计的静态连接的应用程序组成。之所以使用静态连接的应用程序,是因为少量的静态连接程序所要的存储空间,比同样数量的动态连接的程序所占的空间小,这个平衡点需要我们在实际开发中去获取。也许你正在设计的是个PDA,它的应用程序较多,那么你很可能就要使用动态连接程序来减少存储空间。在你的/bin或者/sbin目录下,用厂列表看看bash,ifconfig, vi...,也许只用几十K,当你运行 ldd /bin/bash 时,你会看到它们都和好几个库文件相连。好了,这样看来,我们得把PC想像成一个嵌入式硬件平台,再重新制作一个特定功能的嵌入式linux。
基础知识
再进行实际操作之前,先来搞清楚几个基础知识。
内核装载器Loader,它的作用是把内核从外部存储器,移动到内存中。它只作这个事情,一旦完成了调入内核的工作,Loader就跳转到内核位置开始执行。不同架构有不同的 Loader,在x86结构的PC上,通常使用的loader有LILO,GRUB,syslinux,syslinux在嵌入式linux中也同样工作。其他非x86架构的应用中,你必须使用专门的loader,或者自己编写loader来装入内核。也有不使用loader的情况,系统加电以后,内核直接从烧录有映象的Flash上开始执行。
内核,一旦内核开始执行,它将通过驱动程序初始化所有硬件,这可以从我们的pc机监视器的输出看出来,每个驱动程序都打印一些有关它的信息。初始化完成后,计算机就准备运行嵌入式应用。也许一个,也许是多个应用程序组成了嵌入式应用,但通常首先调用的是init(通过loader 向核心传入init=/program 可以定制首先运行的程序)。桌面linux中,init会读取/etc/inittab文件,来决定执行级别和哪些脚本和命令。嵌入式应用中,可以根据实际的情况决定是否使用标准的init执行方式,也许这个init是个静态程序,它能够完成我们的嵌入应用的特定任务,那完全不用考虑inittab了。
initrd文件系统,initrd以一种把内核从存储介质装入到内存的相同的机制来装入一个小型文件系统。这个文件系统最好是以压缩的方式存储在介质上的,解压缩到RAM盘上。通过使用initrd,包含有核心驱动和启动脚本的小文件系统,就可以直接从介质上和内核一起启动起来,内核届压缩这个文件系统,并执行这个文件系统上叫做/linuxrc的脚本文件,这个脚本通常会把启动过程中所需要的驱动程序装入。脚本退出以后,initrd文件系统也卸下了,启动过程进入真正初始化过程。对于嵌入式来讲,可以将需要的应用软件都运行在这个initrd文件系统上,只要/linxrc文件不结束,内核启动过程的其他部分就不会继续。
做个试验:
cp /boot/initrd-2.4.20.img /tmp
cd /tmp
mv initrd-2.4.2-.img initrd.img.gz
gunzip initrd.img.gz
mount -o loop initrd.img /mnt
cd /mnt
ls
cat linuxrc 可以看到里面执行了加载了两个模块的操作,你在启动linxu的时候会看见屏幕打印信息。
入门试验,制作一个简单的应用
我们使用一张软盘启动一台假象的只有一个串口,键盘输入,显示输出的x86架构的linux系统,执行的特定应用就是运行minicom,通过串口拨号。需要软件: minicom-xx.src.tar.gz 和 syslinux-xx.tar.gz,xx代表版本号,开始之前,在主目录建立一个目录,来释放这两个软件包:
cd
mkdir -p project/minilinux
cd project/minilinux
tar zxvf minicom-xx.src.tar.gz
tar zxvf syslinux-xx.tar.gz
1、裁减linux内核(需要系统安装内核文件包)
配置内核的时候,我们需要选择这些:摸块编入内核,386处理器、物理内存off、支持ELF、标准PC软盘、支持RAM盘(4096)、支持 initial RAM disk (initrd)、虚你终端、虚拟终端控制台、标准串口、ext2文件系统、控制台驱动,VGA text console、DOS FAT、MSDOS文件系统,其他的都可以不要,这样内核编出来较小。
步骤:
cd /usr/src/linux
make mrproper
make xconfig
make dep && make bzImage
得到 /usr/src/linux/arch/i386/boot/目录的内核文件bzIamge。
2、编译一个静态的minicom ,把它作为将来的linuxrc
cd minicom-xx/src
vi Makefile
修改下面这行
minicom: $(minicom_OBJECTS) $(minicom_DEPENDENCIES)
rm -f minicom 下面的行加上 -static,连接为静态程序
(LINK) -static $(minicom_LDFLAGS) $(minicom_OBJECTS) $(minicom_LDADD) $(LIBS)
vi minicom.c
找到 if (real_uid==0 && dosetup==0 ) 删除这个判断条件语句,主要是用于权限判断的,因为这个嵌入应用不关注权限问题,否则会出错。
make
得到可执行程序,用ldd 检查一下是不是静态程序。
3、准备initrd压缩文件image.gz
dd if=/dev/zero of=image bs=1k count=4096
losetup /dev/loop0 image
mke2fs -m 0 /dev/loop0
mounmt -t ext2 /dev/loop0 /mnt/
mkdir -p /mnt/dev
mkdir -p /mnt/usr/share/terminfo/l/
cd /dev
cp -a consle null tty tty0 zero mem /mnt/dev
cp -P /usr/share/terminfo/l/linux /mnt/usr/share/terminfo/l/linux
cp ~/project/minilinux/mincom/src/minicom /mnt/linuxrc
umount /mnt
losetup -d /dev/loop0
sync
gzip -9 image
4、制作软盘引导,并拷贝文件 bzimage image.gz 到软盘
A.使用grub
fdformat /dev/fd0
mke2fs /dev/fd0
mount /mnt/fd0 /mnt/floppy
mkdir -p /mnt/floppy/boot/grub
cp /boot/grub/stage1 /boot/grub/stage2 /mnt/floppy/boot/grub
执行 grub,在软盘上创建引导
grub > root (fd0)
grub > setup (fd0)
grub > quit
cp /usr/src/linux/arch/i386/boot/bzImge /mnt/floppy
cp ~/porject/minilinux/image.gz /mnt/floppy
编辑 /mnt/floppy/boot/grub/grub.conf
default =0
timeout-=10
title minilinux
root (fd0)
kernel /bzImage
initrd /image.gz
卸下软盘
umount /mnt/floppy
B. 使用syslinux
fdformat /dev/fd0
mkfs.msdos /dev/fd0
mount -t msdos /dev/fd0 /mnt/floppy
cp /usr/src/linux/arch/i386/boot/bzImge /mnt/floppy
cp ~/porject/minilinux/image.gz /mnt/floppy
cp syslinux-xx/ldlinxu.sys /mnt/floppy
cat > /mnt/floppy/syslinux.cfg
LABEL linux
KERNEL bzimage
APPEND initrd=image.gz
umont /mnt/floppy
syslinux-xx/syslinux /dev/fd0
sync
5、用软盘启动计算机,如果幸运,minicom的运行画面出现在屏幕上。
到此,我们的单应用嵌入式linux做好了,但它还很简陋,没有什么实际用途,但通过这个实验,可以了解嵌入式系统的大致结构和开发过程。在进行实际的嵌入式开发时,通常要在PC机上借助嵌入式linux开发工具包,如:uclinux,bluecat等,对相应的硬件平台(目标机)进行软件编写编译,调试成功后,将内核及应用程序写入到目标机的存储器中,从而完成整个应用。
uClinux简介-介绍ucLinux的一些基本情况:
uClinux小型化的做法
uClinux就是Micro-Control-Linux,字面上的理解就是'针对微控制领域而设计的Linux系统'。
标准Linux可能采用的小型化方法
1. 重新编译内核
Linux内核采用模块化的设计,内核模块作为可选的选项,在编译系统内核时指定。因此一种较通用的做法是对Linux内核重新编译,在编译时仔细的选择嵌入式设备所需要的功能支持模块,同时删除不需要的功能。通过对内核的重新配置,可以使系统运行所需要的内核显著减小,从而缩减资源使用量。
2. 制作root文件系统映象
Linux系统在启动时必须加载根(root)文件系统,因此剪裁系统同时包括root文件系统的剪裁。在x86系统下,Linux可以在Dos下,使用Loadlin文件加载启动。
uClinux采用的小型化方法
1.uClinux的内核加载方式
uClinux的内核有两种可选的运行方式:可以在flash上直接运行,也可以加载到内存中运行。这种做法可以减少内存需要。
Flash运行方式:把内核的可执行映像烧写到flash上,系统启动时从flash的某个地址开始逐句执行。这种方法实际上是很多嵌入式系统采用的方法。
内核加载方式:把内核的压缩文件存放在flash上,系统启动时读取压缩文件在内存里解压,然后开始执行,这种方式相对复杂一些,但是运行速度可能更快(ram的存取速率要比flash高)。同时这也是标准Linux系统采用的启动方式。
2.uClinux的根(root)文件系统
uClinux系统采用romfs文件系统,相对于ext2文件系统要求更少的空间。空间的节省首先来自内核支持romfs文件系统需要更少的代码,其次 romfs文件系统相对简单,建立文件系统超级块(superblock)需要更少的存储空间。Romfs文件系统不支持动态擦写保存,对于需要动态保存的数据采用虚拟ram盘的方法进行处理(ram盘采用ext2文件系统)。
3.uClinux的应用程序库
uClinux小型化的另一个做法是重写了应用程序库,相对于越来越大且越来越全的glibc库,uClibc对libc做了精简。
uClinux对用户程序采用静态连接的形式,这种做法会使应用程序变大,但是基于内存管理的问题,不得不这样做。
uClinux的开发环境
GNU开发套件
Gnu开发套件包括一系列的开发调试工具。主要组件:
Gcc: 编译器,可做成交叉编译的形式,即在宿主机上开发编译目标上可运行的二进制文件。
Binutils:一些辅助工具,包括objdump(可以反编译二进制文件),as(汇编编译器),ld(连接器)等等。
Gdb:调试器,可使用多种交叉调试方式,gdb-bdm(背景调试工具),gdbserver(使用以太网络调试)。
uClinux的打印终端
uClinux的默认终端通常是串口,内核启动时所有的信息都打印到串口终端(使用printk函数打印),同时也可以通过串口终端与系统交互。
uClinux在启动时启动了telnetd(远程登录服务)。至于是否允许远程登录可以通过烧写romfs文件系统时由用户决定。
交叉编译调试工具
支持一种新的处理器,必须具备一些编译,汇编工具,使用这些工具可以形成可运行于这种处理器的二进制文件。对于内核使用的编译工具同应用程序使用的有所不同。在解释不同点之前,需要对gcc连接做一些说明:
.ld(link description)文件:ld文件是指出连接时内存映象格式的文件。
crt0.S:应用程序编译连接时需要的启动文件,主要是初始化应用程序栈。
pic:position independence code ,与位置无关的二进制格式文件,在程序段中必须包括reloc段,从而使的代码加载时可以进行重新定位。
内核编译连接时,使用ucsimm.ld文件,形成可执行文件映像,所形成的代码段既可以使用间接寻址方式(即使用reloc段进行寻址),也可以使用绝对寻址方式。这样可以给编译器更多的优化空间。因为内核可能使用绝对寻址,所以内核加载到的内存地址空间必须与ld文件中给定的内存空间完全相同。
应用程序的连接与内核连接方式不同。应用程序由内核加载(可执行文件加载器将在后面讨论),由于应用程序的ld文件给出的内存空间与应用程序实际被加载的内存位置可能不同,在应用程序加载的过程中需要一个重新定位的过程,即对reloc段进行修正,使得程序进行间接寻址时不至于出错。(这个问题在i386 等高级处理器上方法有所不同,本文将在后面进一步分析)。
由上述讨论,至少需要两套编译连接工具。在讨论过uClinux的内存管理后本文将给出整个系统的工作流程以及系统在flash和ram中的空间分布。
uClinux的内存管理
uClinux同标准Linux的最大区别就在于内存管理,由于uClinux的内存管理引发了一些标准Linux所不会出现的问题。本文将把uClinux内存管理同标准Linux的那内存管理部分进行比较分析。
标准Linux使用的虚拟存储器技术
标准Linux使用虚拟存储器技术,提供比计算机系统中实际使用的物理内存大得多的内存空间,从而使得编程人员在不用考虑计算机中的物理内存容量。
为了支持虚拟存储管理器的管理,Linux系统采用分页(paging)的方式来载入进程。所谓分页既是把实际的存储器分割为相同大小的段,例如每个段1024个字节,这样1024个字节大小的段便称为一个页面(page)。
虚拟存储器由存储器管理机制及一个大容量的快速硬盘存储器支持。它的实现基于局部性原理,当一个程序在运行之前,没有必要全部装入内存,而是仅将那些当前要运行的那些部分页面或段装入内存运行(copy-on-write),其余暂时留在硬盘上程序运行时如果它所要访问的页(段)已存在,则程序继续运行,如果发现不存在的页(段),操作系统将产生一个页错误(page fault),这个错误导致操作系统把需要运行的部分加载到内存中。必要时操作系统还可以把不需要的内存页(段)交换到磁盘上。利用这样的方式管理存储器,便可把一个进程所需要用到的存储器以化整为零的方式,视需求分批载入,而核心程序则凭借属于每个页面的页码来完成寻址各个存储器区段的工作。
标准Linux是针对有内存管理单元的处理器设计的。在这种处理器上,虚拟地址被送到内存管理单元(MMU),把虚拟地址映射为物理地址。
通过赋予每个任务不同的虚拟--物理地址转换映射,支持不同任务之间的保护。地址转换函数在每一个任务中定义,在一个任务中的虚拟地址空间映射到物理内存的一个部分,而另一个任务的虚拟地址空间映射到物理存储器中的另外区域。计算机的存储管理单元(MMU)一般有一组寄存器来标识当前运行的进程的转换表。在当前进程将CPU放弃给另一个进程时(一次上下文切换),内核通过指向新进程地址转换表的指针加载这些寄存器。MMU寄存器是有特权的,只能在内核态才能访问。这就保证了一个进程只能访问自己用户空间内的地址,而不会访问和修改其它进程的空间。当可执行文件被加载时,加载器根据缺省的ld文件,把程序加载到虚拟内存的一个空间,因为这个原因实际上很多程序的虚拟地址空间是相同的,但是由于转换函数不同,所以实际所处的内存区域也不同。而对于多进程管理当处理器进行进程切换并执行一个新任务时,一个重要部分就是为新任务切换任务转换表。我们可以看到Linux系统的内存管理至少实现了以下功能:
运行比内存还要大的程序。理想情况下应该可以运行任意大小的程序
◇可以运行只加载了部分的程序,缩短了程序启动的时间
◇可以使多个程序同时驻留在内存中提高CPU的利用率
◇可以运行重定位程序。即程序可以方于内存中的任何一处,而且可以在执行过程中移动。
◇写机器无关的代码。程序不必事先约定机器的配置情况。
◇减轻程序员分配和管理内存资源的负担。
◇可以进行共享--例如,如果两个进程运行同一个程序,它们应该可以共享程序代码的同一个副本。
◇提供内存保护,进程不能以非授权方式访问或修改页面,内核保护单个进程的数据和代码以防止其它进程修改它们。否则,用户程序可能会偶然(或恶意)的破坏内核或其它用户程序。
虚存系统并不是没有代价的。内存管理需要地址转换表和其他一些数据结构,留给程序的内存减少了。地址转换增加了每一条指令的执行时间,而对于有额外内存操作的指令会更严重。当进程访问不在内存的页面时,系统发生失效。系统处理该失效,并将页面加载到内存中,这需要极耗时间的磁盘I/O操作。总之内存管理活动占用了相当一部分cpu时间(在较忙的系统中大约占10%)。