误区二:认为保持等间距比匹配线长更重要。在实际的PCB布线中,往往不能同时满足差
分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才
能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行,这时候我们该
如何取舍呢?在下结论之前我们先看看下面一个仿真结果。
从上面的仿真结果看来,方案1和方案2波形几乎是重合的,也就是说,间距不等造成的影
响是微乎其微的,相比较而言,线长不匹配对时序的影响要大得多(方案3)。再从理论
分析来看,间距不一致虽然会导致差分阻抗发生变化,但因为差分对之间的耦合本身就不
显著,所以阻抗变化范围也是很小的,通常在10%以内,只相当于一个过孔造成的反射,这
对信号传输不会造成
明显的影响。而线长一旦不匹配,除了时序上会发生偏移,还给差分信号中引入了共模的
成分,降低信号的质量,增加了EMI。
可以这么说,PCB差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据
设计要求和实际应用进行灵活处理。
误区三:认为差分走线一定要靠的很近。让差分走线靠近无非是为了增强他们的耦合,既
可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。虽说
这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏
蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制EMI的目
的了。如何才能保证
差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电
磁场能量是随着距离呈平方关系递减的,一般线间距超过4倍线宽时,它们之间的干扰就
极其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结
构在高频的(10G以上
)IC封装PCB设计中经常会用采用,被称为CPW结构,可以保证严格的差分阻抗控制(2Z0
),如图1-8-19。
差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产生的诸如
阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。此外,如果相邻两层耦合不够
紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰
就不是个问题。在一般频率(GHz以下),EMI也不会是很严重的问题,实验表明,相距500M
ils的差分走线,在3
米之外的辐射能量衰减已经达到60dB,足以满足FCC的电磁辐射标准,所以设计者根本不
用过分担心差分线耦合不够而造成电磁不兼容问题。
3. 蛇形线
蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时
序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线
时要尽量避免使用。但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号
之间的时间偏移,往往不得不故意进行绕线。
那么,蛇形线对信号传输有什么影响呢?走线时要注意些什么呢?其中最关键的两个参数
就是平行耦合长度(Lp)和耦合距离(S),如图1-8-21所示。很明显,信号在蛇形走线
上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp越大,则耦合程度
也越大。可能会导致传输延时减小,以及由于串扰而大大降低信号的质量,其机理可以参考
第三章对共模和差模串
扰的分析。
下面是给Layout工程师处理蛇形线时的几点建议:
1. 尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。通俗
的说就是绕大弯走线,只要S足够大,就几乎能完全避免相互的耦合效应。
2. 减小耦合长度Lp,当两倍的Lp延时接近或超过信号上升时间时,产生的串扰将达到饱
和。
3. 带状线(Strip-Line)或者埋式微带线(Embedded Micro-strip)的蛇形线引起的信
号传输延时小于微带走线(Micro-strip)。理论上,带状线不会因为差模串扰影响传输
速率。
4. 高速以及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿
蜒走线。
5. 可以经常采用任意角度的蛇形走线,如图1-8-20中的C结构,能有效的减少相互间的
耦合。
6. 高速PCB设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,所以
只作时序匹配之用而无其它目的。
7. 有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。
关键词:
蛇形
差分
走线