首先,还是要重新审视大数据的定义。行业里对大数据的定义有很多,有广义的定义,也有狭义的定义。
广义的定义,有点哲学味道——大数据,是指物理世界到数字世界的映射和提炼。通过发现其中的数据特征,从而做出提升效率的决策行为。
狭义的定义,是技术工程师给的——大数据,是通过获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。
1.要做什么?——获取数据、存储数据、分析数据
2.对谁做?——大容量数据
3.目的是什么?——挖掘价值
获取数据、存储数据、分析数据,这一系列的行为,都不算新奇。我们每天都在用电脑,每天都在干这个事。
例如,每月的月初,考勤管理员会获取每个员工的考勤信息,录入Excel表格,然后存在电脑里,统计分析有多少人迟到、缺勤,然后扣TA工资。
但是,同样的行为,放在大数据身上,就行不通了。换言之,传统个人电脑,传统常规软件,无力应对的数据级别,才叫“大数据”。
数据的增长,为什么会如此之快?
说到这里,就要回顾一下人类社会数据产生的几个重要阶段。
大致来说,是三个重要的阶段。
第一个阶段
世界上第一台通用计算机-ENIAC
世界上第一台通用计算机-ENIAC
就是计算机被发明之后的阶段。尤其是数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这时的数据,以结构化数据为主(待会解释什么是“结构化数据”)。数据的产生方式,也是被动的。
第二个阶段
是伴随着互联网2.0时代出现的。互联网2.0的最重要标志,就是用户原创内容。随着互联网和移动通信设备的普及,人们开始使用博客、facebook、youtube这样的社交网络,从而主动产生了大量的数据。
第三个阶段
是感知式系统阶段。随着物联网的发展,各种各样的感知层节点开始自动产生大量的数据,例如遍布世界各个角落的传感器、摄像头。
经过了“被动-主动-自动”这三个阶段的发展,最终导致了人类数据总量的极速膨胀。
转贴自网络