驱动层适应框架层的通用模板
分析完rtthread的通用框架,我们基本上可以得到以下dac驱动实现模板。
struct dac_param
{
// 驱动内部维护参数
};
struct rt_dac_ops dac_ops =
{
.disabled = dac禁用接口实现,
.enabled = dac使能接口实现,
.convert = dac写电压值对应的寄存器值函数,
.get_resolution = 返回dac精度函数,
};
static int dac_init(void)
{
struct dac_param *param;
struct rt_dac_dev *dev;
const char *device_name = "xxxx";
dev = (struct rt_dac_dev *)rt_malloc(sizeof(struct rt_dac_dev));
param = (struct dac_param *)rt_malloc(sizeof(struct dac_param));
// DAC 硬件资源初始化
// 系统注册DAC驱动
if (RT_EOK != rt_hw_dac_register(dev, device_name, &dac_ops, (void *)param))
{
LOG_E("%s register failed", device_name);
return -RT_ERROR;
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(dac_init);瑞萨适配框架层的实现
驱动注册接口
struct ra_dac_map ra_dac[] =
{
#ifdef BSP_USING_DAC0
{'0', &g_dac0_cfg, &g_dac0_ctrl},
#endif
#ifdef BSP_USING_DAC1
{'1', &g_dac1_cfg, &g_dac1_ctrl},
#endif
};
#ifdef BSP_USING_DAC0
struct rt_dac_device dac0_device;
struct ra_dac_dev _ra_dac0_device = {.ra_dac_device_t = &dac0_device, .ra_dac_map_dev = &ra_dac[0]};
#endif
#ifdef BSP_USING_DAC1
struct rt_dac_device dac1_device;
struct ra_dac_dev _ra_dac1_device = {.ra_dac_device_t = &dac1_device, .ra_dac_map_dev = &ra_dac[1]};
#endif
struct rt_dac_ops ra_dac_ops =
{
.disabled = ra_dac_disabled,
.enabled = ra_dac_enabled,
.convert = ra_dac_write,
};
static int ra_dac_init(void)
{
#ifdef BSP_USING_DAC0
_ra_dac0_device.ra_dac_device_t->ops = &ra_dac_ops;
R_DAC_Open((dac_ctrl_t *)_ra_dac0_device.ra_dac_map_dev->g_ctrl, (dac_cfg_t const *)_ra_dac0_device.ra_dac_map_dev->g_cfg);
if (FSP_SUCCESS != rt_hw_dac_register(_ra_dac0_device.ra_dac_device_t, "dac0", &ra_dac_ops, (void *)_ra_dac0_device.ra_dac_map_dev))
{
LOG_E("dac0 register failed");
return -RT_ERROR;
}
#endif
#ifdef BSP_USING_DAC1
_ra_dac1_device.ra_dac_device_t->ops = &ra_dac_ops;
R_DAC_Open((dac_ctrl_t *)_ra_dac1_device.ra_dac_map_dev->g_ctrl, (dac_cfg_t const *) _ra_dac1_device.ra_dac_map_dev->g_cfg);
if (FSP_SUCCESS != rt_hw_dac_register(_ra_dac1_device.ra_dac_device_t, "dac1", &ra_dac_ops, (void *)_ra_dac1_device.ra_dac_map_dev))
{
LOG_E("dac1 register failed");
return -RT_ERROR;
}
#endif
return RT_EOK;
}
INIT_DEVICE_EXPORT(ra_dac_init);DAC的适配,并未像ADC那样采用for循环的方式编写,这也导致了如果后面存在dac2,甚至dacx时,不得不修改ra_dac_init和数组结构体定义,修改面相较于ADC驱动会大一些。另外,从这里我们可以看出,如果我们要适配已有的dac驱动配置,则需要按照struct ra_dac_map ra_dac[]中的内容生成RASC配置,否则会出现编译报错。另外,这注册接口有个小问题,rt_hw_dac_register的返回值居然是用FSP_SUCCESS来判断的,虽然从功能上来说这不是问题,但是从理解上来说,FSP_SUCCESS是FSP特有的定义,不是RTT的定义,若两方有任何一方突然更新这块,就会存在不匹配的情况。
使能/禁用dac接口
之所以放一起,是因为ADC那部分就是放一起实现的。
rt_err_t ra_dac_disabled(struct rt_dac_device *device, rt_uint32_t channel)
{
RT_ASSERT(device != RT_NULL);
struct ra_dac_map *dac = (struct ra_dac_map *)device->parent.user_data;
if (FSP_SUCCESS != R_DAC_Stop((dac_ctrl_t *)dac->g_ctrl))
{
LOG_E("dac%c stop failed.", dac->name);
return -RT_ERROR;
}
return RT_EOK;
}
rt_err_t ra_dac_enabled(struct rt_dac_device *device, rt_uint32_t channel)
{
RT_ASSERT(device != RT_NULL);
struct ra_dac_map *dac = (struct ra_dac_map *)device->parent.user_data;
if (FSP_SUCCESS != R_DAC_Start((dac_ctrl_t *)dac->g_ctrl))
{
LOG_E("dac%c start failed.", dac->name);
return -RT_ERROR;
}
return RT_EOK;
}这部分上实现其实很精简,直接对接dac的FSP代码,而对接的参数就是RASC生成的配置。
DAC电压值写实现
rt_err_t ra_dac_write(struct rt_dac_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
RT_ASSERT(device != RT_NULL);
struct ra_dac_map *dac = (struct ra_dac_map *)device->parent.user_data;
if (FSP_SUCCESS != R_DAC_Write((dac_ctrl_t *)dac->g_ctrl, *value))
{
LOG_E("dac%c set value failed.", dac->name);
return -RT_ERROR;
}
return RT_EOK;
}这接口的实现也特别精简,甚至都不需要细看代码就已经知道了需要干嘛了。实际上就是将寄存器值通过FSP接口设下去。
总结
相比较于瑞萨适配ADC驱动的实现,DAC实现上有那么一点点小瑕疵(注册驱动函数),但目前来说,并不影响驱动的使用,可以暂时不去优化。
我要赚赏金
