这些小活动你都参加了吗?快来围观一下吧!>>
电子产品世界 » 论坛首页 » 企业专区 » OpenVINO生态社区 » IEEE: 用于ADAS的资源约束机器学习:系统性回顾

共4条 1/1 1 跳转至

IEEE: 用于ADAS的资源约束机器学习:系统性回顾

助工
2020-09-17 09:28:57     打赏

行业机器学习(ML)方法的出现为汽车领域,特别是高级驾驶辅助系统(ADAS)提供了新的可能性。这些方法主要集中在特定的问题上,从交通标志和灯光识别到行人检测。在大多数情况下,ADAS系统中发现的计算资源和功率预算受到限制,而大多数机器学习方法都是计算密集型的。通常的解决方案包括调整ML模型,以符合推理的内存和实时(RT)要求。一些模型很容易适应资源受限的硬件,如支持向量机,而其他模型,如神经网络,则需要更复杂的过程来适应所需的硬件。ADAS硬件(HW平台)是多样化的,从复杂的MPSoC CPU到经典的MCU、DPS和特定应用的FPGA和ASIC或特定的GPU平台(如NVIDIA家族的Tegra或Jetson)。因此,实现的ML模型的复杂度和所选平台之间存在着权衡,影响着性能指标:功能结果、能耗和速度(延迟和吞吐量)。本文以系统回顾的形式进行调查,分析已发表的将ML模型嵌入到ADAS应用的资源限制实现中的研究工作的范围,以及在ML性能、能耗和速度权衡方面的成就。

https://ieeexplore.ieee.org/abstract/document/9016213

Resource-Constrained Machine Learning.pdf

对计算机视觉感兴趣?这个社区推荐给你~

>>点击了解OpenVINO生态开发社区




关键词: OpenVINO     Machine Learning    

高工
2020-09-21 23:25:03     打赏
2楼

回顾的挺好


工程师
2020-09-28 23:55:23     打赏
3楼

感谢您的分享


工程师
2020-11-08 22:14:13     打赏
4楼

应该是不错的


共4条 1/1 1 跳转至

回复

匿名不能发帖!请先 [ 登陆 注册 ]