我们提出了一种处理傅里叶变换的方法,其并不需要二次多项式相位项的抽样,而是用解析的方法处理。我们提出该理论的同时也给出了几个例子证明其潜力。 1.简介 物理光学建模需要频繁地从空间转换到角频域,反之亦然。这可以由电场和磁场分量的傅里叶变换得到。所以,快速傅里叶变换(FFT)算法成了快速物理光学建模的支柱[1]。FFT技术的数值计算量与场分量复振幅所需采样点的数量近似成线性关系。在光学中,我们经常处理有强波阵面相位的场分量,例如:球形。但是由于2π模,平滑的波阵面相位的复抽样导致了大量的数值计算工作,甚至在FFT中也是如此。 2.理论2.1 场的表征:提取二次相位 我们从空间域的符号开始,在本文中我们使用符号 ![]() ![]() 在公式1中,我们假设场 ![]() ![]() ![]() ![]() ![]() 2.2.半解析傅里叶变换 从卷积定理可知: ![]() 通常来说,项 ![]() ![]() 适用于任何复 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 3.数值仿真 这些概念在物理光学建模和设计软件Wyrowski VirtualLab Fusion[3]中实现。 3.1.有效性测试1:纯二次相位 在第一组测试中,我们准备了余项场 ![]() ![]() ![]() ![]() 图2展示了不同情况下FFT和半解析FFT所需的采样点。可以发现当场有强二次相位时,半解析FFT需要比FFT少得多的抽样点。 ![]() 在图3中我们给出了三个典型位置的角频谱的振幅。解释了波阵面相位的物理意义,因此当波阵面相位非常小时,在FT中衍射效应占主导地位。否则,当波阵面相位增加时,FT展现了越来越多的几何特征。 ![]() ![]() ![]() ![]() 4.结论我们论证了半解析FFT的推导并且展示了几个数值例子。事实表明,半解析FFT的采样仅取决于余项场。在波阵面相位较强的场中,半解析FFT需要的采样点明显较少。 |
共3条
1/1 1 跳转至页
半解析快速傅里叶变换


共3条
1/1 1 跳转至页
回复
打赏帖 | |
---|---|
汽车电子中巡航控制系统的使用被打赏10分 | |
分享汽车电子中巡航控制系统知识被打赏10分 | |
分享安全气囊系统的检修注意事项被打赏10分 | |
分享电子控制安全气囊计算机知识点被打赏10分 | |
【分享开发笔记,赚取电动螺丝刀】【OZONE】使用方法总结被打赏20分 | |
【分享开发笔记,赚取电动螺丝刀】【S32K314】芯片启动流程分析被打赏40分 | |
【分享开发笔记,赚取电动螺丝刀】【S32K146】S32DS RTD 驱动环境搭建被打赏12分 | |
【分享开发笔记,赚取电动螺丝刀】【IAR】libc标注库time相关库函数使用被打赏23分 | |
LP‑MSPM0L1306开发版试用结果被打赏10分 | |
【分享开发笔记,赚取电动螺丝刀】【LP-MSPM0L1306】适配 RT-Thread Nano被打赏23分 |