前言
RTT存在两版串口框架,而从bsp目录的适配情况看,两版串口框架都有新bsp适配使用,因此两套框架都需要学习。
由于V2相比较于V1,改动还挺多,因此学习时,将两套框架分开学习。
代码解析
V1框架的代码主要放置于/components/drivers/serial/serial.c中,因此学习也是围绕该文件而展开的。
串口注册入口
串口注册入口其实挺好找,在RTT设备框架里,所有设备都是基于device框架实现的,因此只需要在框架文件中搜索 struct rt_device_ops ,再反查便可定位到注册入口,具体注册入口如下:
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops serial_ops =
{
rt_serial_init,
rt_serial_open,
rt_serial_close,
rt_serial_read,
rt_serial_write,
rt_serial_control
};
#endif
/*
* serial register
*/
rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
const char *name,
rt_uint32_t flag,
void *data)
{
rt_err_t ret;
struct rt_device *device;
RT_ASSERT(serial != RT_NULL);
rt_spin_lock_init(&(serial->spinlock));
device = &(serial->parent);
device->type = RT_Device_Class_Char;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &serial_ops;
#else
device->init = rt_serial_init;
device->open = rt_serial_open;
device->close = rt_serial_close;
device->read = rt_serial_read;
device->write = rt_serial_write;
device->control = rt_serial_control;
#endif
device->user_data = data;
/* register a character device */
ret = rt_device_register(device, name, flag);
#ifdef RT_USING_POSIX_STDIO
/* set fops */
device->fops = &_serial_fops;
#endif
#if defined(RT_USING_SMART)
rt_hw_serial_register_tty(serial);
#endif
return ret;
}观察注册入口,其实就可以发现,里面主要干了这么几件事,初始化自旋锁(作用得后面分析才清楚),标准的设备注册操作,最后是特定功能的特定入口注册,由于现在所使用的平台是非RTSmart的平台,因此关于RT_USING_SMART也就不去分析了。
串口初始化入口
static rt_err_t rt_serial_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* initialize rx/tx */
serial->serial_rx = RT_NULL;
serial->serial_tx = RT_NULL;
rt_memset(&serial->rx_notify, 0, sizeof(struct rt_device_notify));
/* apply configuration */
if (serial->ops->configure)
result = serial->ops->configure(serial, &serial->config);
return result;
}从初始化入口上看,实际上就是提前初始化串口所需要的变量,以防后面逻辑跑乱。另外,调用了驱动层的configure入口,将当前串口的配置信息传递至驱动层实现。
串口打开入口
static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
{
rt_uint16_t stream_flag = 0;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
LOG_D("open serial device: 0x%08x with open flag: 0x%04x",
dev, oflag);
/* check device flag with the open flag */
if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX))
return -RT_EIO;
if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX))
return -RT_EIO;
if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX))
return -RT_EIO;
if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX))
return -RT_EIO;
/* keep steam flag */
if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM))
stream_flag = RT_DEVICE_FLAG_STREAM;
/* get open flags */
dev->open_flag = oflag & 0xff;
#ifdef RT_USING_PINCTRL
/* initialize iomux in DM */
rt_pin_ctrl_confs_apply_by_name(dev, RT_NULL);
#endif
/* initialize the Rx/Tx structure according to open flag */
if (serial->serial_rx == RT_NULL)
{
if (oflag & RT_DEVICE_FLAG_INT_RX)
{
struct rt_serial_rx_fifo* rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
serial->config.bufsz);
RT_ASSERT(rx_fifo != RT_NULL);
rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
rx_fifo->put_index = 0;
rx_fifo->get_index = 0;
rx_fifo->is_full = RT_FALSE;
serial->serial_rx = rx_fifo;
dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX);
}
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_RX)
{
if (serial->config.bufsz == 0) {
struct rt_serial_rx_dma* rx_dma;
rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma));
RT_ASSERT(rx_dma != RT_NULL);
rx_dma->activated = RT_FALSE;
serial->serial_rx = rx_dma;
} else {
struct rt_serial_rx_fifo* rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
serial->config.bufsz);
RT_ASSERT(rx_fifo != RT_NULL);
rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
rx_fifo->put_index = 0;
rx_fifo->get_index = 0;
rx_fifo->is_full = RT_FALSE;
serial->serial_rx = rx_fifo;
/* configure fifo address and length to low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX);
}
dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
}
#endif /* RT_SERIAL_USING_DMA */
else
{
serial->serial_rx = RT_NULL;
}
}
else
{
if (oflag & RT_DEVICE_FLAG_INT_RX)
dev->open_flag |= RT_DEVICE_FLAG_INT_RX;
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_RX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
#endif /* RT_SERIAL_USING_DMA */
}
if (serial->serial_tx == RT_NULL)
{
if (oflag & RT_DEVICE_FLAG_INT_TX)
{
struct rt_serial_tx_fifo *tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc(sizeof(struct rt_serial_tx_fifo));
RT_ASSERT(tx_fifo != RT_NULL);
rt_completion_init(&(tx_fifo->completion));
serial->serial_tx = tx_fifo;
dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX);
}
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_TX)
{
struct rt_serial_tx_dma* tx_dma;
tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
RT_ASSERT(tx_dma != RT_NULL);
tx_dma->activated = RT_FALSE;
rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
serial->serial_tx = tx_dma;
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_DEVICE_FLAG_DMA_TX);
}
#endif /* RT_SERIAL_USING_DMA */
else
{
serial->serial_tx = RT_NULL;
}
}
else
{
if (oflag & RT_DEVICE_FLAG_INT_TX)
dev->open_flag |= RT_DEVICE_FLAG_INT_TX;
#ifdef RT_SERIAL_USING_DMA
else if (oflag & RT_DEVICE_FLAG_DMA_TX)
dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
#endif /* RT_SERIAL_USING_DMA */
}
/* set stream flag */
dev->open_flag |= stream_flag;
return RT_EOK;
}乍一看,这函数写的实在是长,完全违背了不超过屏幕一页的规则。但是细看,会发现,这个函数也就做了以下几个事情:
1. 先是检查打开方式与对应串口支持的方式是否匹配。若不匹配,则直接返回错误信息,若匹配,则继续后续操作。其中,流模式比较特殊,具体操作为不匹配,则不保存对应功能,原因稍后给出。
2. 根据serial_rx这个指针是否被赋值,决定是否需要打开RX功能,其中,不同打开方式操作方式有细微差异
3. 根据serial_tx这个指针是否被赋值,决定是否需要打开TX功能,其中,不同打开方式的操作方式有细微差异
4. 存储流模式标记
串口读操作
/*
* Serial poll routines
*/
rt_inline int _serial_poll_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
{
int ch;
int size;
RT_ASSERT(serial != RT_NULL);
size = length;
while (length)
{
ch = serial->ops->getc(serial);
if (ch == -1) break;
*data = ch;
data ++; length --;
if(serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)
{
if (ch == '\n') break;
}
}
return size - length;
}
/*
* Serial DMA routines
*/
rt_inline int _serial_dma_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
{
rt_base_t level;
RT_ASSERT((serial != RT_NULL) && (data != RT_NULL));
level = rt_spin_lock_irqsave(&(serial->spinlock));
if (serial->config.bufsz == 0)
{
int result = RT_EOK;
struct rt_serial_rx_dma *rx_dma;
rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
RT_ASSERT(rx_dma != RT_NULL);
if (rx_dma->activated != RT_TRUE)
{
rx_dma->activated = RT_TRUE;
RT_ASSERT(serial->ops->dma_transmit != RT_NULL);
serial->ops->dma_transmit(serial, data, length, RT_SERIAL_DMA_RX);
}
else result = -RT_EBUSY;
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
if (result == RT_EOK) return length;
rt_set_errno(result);
return 0;
}
else
{
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
rt_size_t recv_len = 0, fifo_recved_len = rt_dma_calc_recved_len(serial);
RT_ASSERT(rx_fifo != RT_NULL);
if (length < (int)fifo_recved_len)
recv_len = length;
else
recv_len = fifo_recved_len;
if (rx_fifo->get_index + recv_len < serial->config.bufsz)
rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, recv_len);
else
{
rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index,
serial->config.bufsz - rx_fifo->get_index);
rt_memcpy(data + serial->config.bufsz - rx_fifo->get_index, rx_fifo->buffer,
recv_len + rx_fifo->get_index - serial->config.bufsz);
}
rt_dma_recv_update_get_index(serial, recv_len);
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
return recv_len;
}
}
/*
* Serial interrupt routines
*/
rt_inline int _serial_int_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length)
{
int size;
struct rt_serial_rx_fifo* rx_fifo;
RT_ASSERT(serial != RT_NULL);
size = length;
rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
/* read from software FIFO */
while (length)
{
int ch;
rt_base_t level;
/* disable interrupt */
level = rt_spin_lock_irqsave(&(serial->spinlock));
/* there's no data: */
if ((rx_fifo->get_index == rx_fifo->put_index) && (rx_fifo->is_full == RT_FALSE))
{
/* no data, enable interrupt and break out */
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
break;
}
/* otherwise there's the data: */
ch = rx_fifo->buffer[rx_fifo->get_index];
rx_fifo->get_index += 1;
if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
if (rx_fifo->is_full == RT_TRUE)
{
rx_fifo->is_full = RT_FALSE;
}
/* enable interrupt */
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
*data = ch & 0xff;
data ++; length --;
}
return size - length;
}
static rt_ssize_t rt_serial_read(struct rt_device *dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
{
return _serial_int_rx(serial, (rt_uint8_t *)buffer, size);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
{
return _serial_dma_rx(serial, (rt_uint8_t *)buffer, size);
}
#endif /* RT_SERIAL_USING_DMA */
return _serial_poll_rx(serial, (rt_uint8_t *)buffer, size);
}从这里面可以看到,串口框架实现了三种读取方式,三种读取方式的具体实现如下:
1. 中断接收(_serial_int_rx):是用中断方式去驱动读取,而由于存在buffer操作,因此需要自旋锁的保护措施,以防多方操作buffer导致数据异常。
2. dma接收(_serial_dma_rx):里面操作根据不同的dma类型,存在不同的操作。其分为两种实现,一种为dma自己维护buffer时,直接调用驱动提供的dma_transmit接口读取数据,另一种与中断方式类似,直接读取buffer中的缓存。两种读取方式都需要自旋锁保护(暂时不理解为何dma维护buffre时,也需要自旋锁保护)。
3. 轮询接收(_serial_poll_rx):此方法使用轮询的方式直接从驱动中读取数据,因此实现中直接对接驱动中的getc,且没有自旋锁保护的措施。而在这实现中,可以发现,所谓的流模式,即为遇到换行符时退出读取。
串口写操作
rt_inline int _serial_poll_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
{
int size;
RT_ASSERT(serial != RT_NULL);
size = length;
while (length)
{
/*
* to be polite with serial console add a line feed
* to the carriage return character
*/
if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
serial->ops->putc(serial, '\r');
}
serial->ops->putc(serial, *data);
++ data;
-- length;
}
return size - length;
}
rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
{
rt_base_t level;
rt_err_t result;
struct rt_serial_tx_dma *tx_dma;
tx_dma = (struct rt_serial_tx_dma*)(serial->serial_tx);
result = rt_data_queue_push(&(tx_dma->data_queue), data, length, RT_WAITING_FOREVER);
if (result == RT_EOK)
{
level = rt_spin_lock_irqsave(&(serial->spinlock));
if (tx_dma->activated != RT_TRUE)
{
tx_dma->activated = RT_TRUE;
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
/* make a DMA transfer */
serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX);
}
else
{
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
}
return length;
}
else
{
rt_set_errno(result);
return 0;
}
}
rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
{
int size;
struct rt_serial_tx_fifo *tx;
RT_ASSERT(serial != RT_NULL);
size = length;
tx = (struct rt_serial_tx_fifo*) serial->serial_tx;
RT_ASSERT(tx != RT_NULL);
while (length)
{
/*
* to be polite with serial console add a line feed
* to the carriage return character
*/
if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM))
{
if (serial->ops->putc(serial, '\r') == -1)
{
rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER);
continue;
}
}
while (serial->ops->putc(serial, *(char*)data) == -1)
{
rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER);
}
data ++; length --;
}
return size - length;
}
static rt_ssize_t rt_serial_write(struct rt_device *dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
if (size == 0) return 0;
serial = (struct rt_serial_device *)dev;
if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
{
return _serial_int_tx(serial, (const rt_uint8_t *)buffer, size);
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
{
return _serial_dma_tx(serial, (const rt_uint8_t *)buffer, size);
}
#endif /* RT_SERIAL_USING_DMA */
else
{
return _serial_poll_tx(serial, (const rt_uint8_t *)buffer, size);
}
}串口写的函数结构,大致上和串口读一致,因此理解起来也是一样的思路,具体如下:
1. 中断发送(_serial_int_tx):中断发送,其实实现很简单,就是调用驱动提供的putc接口,但是需要注意的是,需要收到驱动回复的完成量tx->completion信息再进行下一步的写。另外中断读不加流操作,中断写加流操作,这点完全看不懂。
2. dma发送(_serial_dma_tx):DMA方式的写,其实实现不止于此,但是放在这全部写,又有些多余,因此这里仅写这部分的思路,这部分的思路为,先将所有数据存储至一个叫tx_dma->data_queue的队列中,然后调用dma_transmit去实现数据发送。而我提到的后续部分,实际上是因为需要有DMA发送完成信息,以及由于dma发送有长度限制,因此在接收到完成信息后需要判断是否还有数据要发送,是否需要告诉上层数据发送完毕。至于这部分,晚点贴出。
3. 轮询发送(_serial_poll_tx):这个方法与中断传输一致,可能由于是轮询方式直接发送,不能像中断那样在中断产生前MCU干别的事,因此就没有加完成量的处理了。
串口控制操作
static rt_err_t rt_serial_control(struct rt_device *dev,
int cmd,
void *args)
{
rt_err_t ret = RT_EOK;
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_RESUME:
/* resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
break;
case RT_DEVICE_CTRL_CONFIG:
if (args)
{
struct serial_configure *pconfig = (struct serial_configure *) args;
if (pconfig->bufsz != serial->config.bufsz && serial->parent.ref_count)
{
/*can not change buffer size*/
return -RT_EBUSY;
}
/* set serial configure */
serial->config = *pconfig;
if (serial->parent.ref_count)
{
/* serial device has been opened, to configure it */
serial->ops->configure(serial, (struct serial_configure *) args);
}
}
break;
case RT_DEVICE_CTRL_NOTIFY_SET:
if (args)
{
rt_memcpy(&serial->rx_notify, args, sizeof(struct rt_device_notify));
}
break;
case RT_DEVICE_CTRL_CONSOLE_OFLAG:
if (args)
{
*(rt_uint16_t*)args = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM;
}
break;
#ifdef RT_USING_POSIX_STDIO
#if defined(RT_USING_POSIX_TERMIOS)
case TCGETA:
case TCGETS:
{
struct termios *tio, tmp;
if (cmd == TCGETS)
{
tio = (struct termios*)args;
}
else
{
tio = &tmp;
}
if (tio == RT_NULL) return -RT_EINVAL;
tio->c_iflag = 0;
tio->c_oflag = 0;
tio->c_lflag = 0;
/* update oflag for console device */
if (rt_console_get_device() == dev)
tio->c_oflag = OPOST | ONLCR;
/* set cflag */
tio->c_cflag = 0;
if (serial->config.data_bits == DATA_BITS_5)
tio->c_cflag = CS5;
else if (serial->config.data_bits == DATA_BITS_6)
tio->c_cflag = CS6;
else if (serial->config.data_bits == DATA_BITS_7)
tio->c_cflag = CS7;
else if (serial->config.data_bits == DATA_BITS_8)
tio->c_cflag = CS8;
if (serial->config.stop_bits == STOP_BITS_2)
tio->c_cflag |= CSTOPB;
if (serial->config.parity == PARITY_EVEN)
tio->c_cflag |= PARENB;
else if (serial->config.parity == PARITY_ODD)
tio->c_cflag |= (PARODD | PARENB);
cfsetospeed(tio, _get_speed(serial->config.baud_rate));
if (cmd == TCGETA)
{
_termios_to_termio(tio, args);
}
}
break;
case TCSETAW:
case TCSETAF:
case TCSETA:
case TCSETSW:
case TCSETSF:
case TCSETS:
{
int baudrate;
struct serial_configure config;
struct termios *tio, tmp;
if ((cmd >= TCSETA) && (cmd <= TCSETA + 2))
{
_termio_to_termios(args, &tmp);
tio = &tmp;
}
else
{
tio = (struct termios*)args;
}
if (tio == RT_NULL) return -RT_EINVAL;
config = serial->config;
baudrate = _get_baudrate(cfgetospeed(tio));
config.baud_rate = baudrate;
switch (tio->c_cflag & CSIZE)
{
case CS5:
config.data_bits = DATA_BITS_5;
break;
case CS6:
config.data_bits = DATA_BITS_6;
break;
case CS7:
config.data_bits = DATA_BITS_7;
break;
default:
config.data_bits = DATA_BITS_8;
break;
}
if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2;
else config.stop_bits = STOP_BITS_1;
if (tio->c_cflag & PARENB)
{
if (tio->c_cflag & PARODD) config.parity = PARITY_ODD;
else config.parity = PARITY_EVEN;
}
else config.parity = PARITY_NONE;
serial->ops->configure(serial, &config);
}
break;
#ifndef RT_USING_TTY
case TCFLSH:
{
int queue = (int)(rt_ubase_t)args;
_tc_flush(serial, queue);
}
break;
case TCXONC:
break;
#endif /*RT_USING_TTY*/
#endif /*RT_USING_POSIX_TERMIOS*/
case TIOCSWINSZ:
{
struct winsize* p_winsize;
p_winsize = (struct winsize*)args;
rt_kprintf("\x1b[8;%d;%dt", p_winsize->ws_col, p_winsize->ws_row);
}
break;
case TIOCGWINSZ:
{
struct winsize* p_winsize;
p_winsize = (struct winsize*)args;
if(rt_thread_self() != rt_thread_find("tshell"))
{
/* only can be used in tshell thread; otherwise, return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
}
else
{
#include <shell.h>
#define _TIO_BUFLEN 20
char _tio_buf[_TIO_BUFLEN];
unsigned char cnt1, cnt2, cnt3, i;
char row_s[4], col_s[4];
char *p;
rt_memset(_tio_buf, 0, _TIO_BUFLEN);
/* send the command to terminal for getting the window size of the terminal */
rt_kprintf("\033[18t");
/* waiting for the response from the terminal */
i = 0;
while(i < _TIO_BUFLEN)
{
_tio_buf[i] = finsh_getchar();
if(_tio_buf[i] != 't')
{
i ++;
}
else
{
break;
}
}
if(i == _TIO_BUFLEN)
{
/* buffer overloaded, and return default size */
p_winsize->ws_col = 80;
p_winsize->ws_row = 24;
break;
}
/* interpreting data eg: "\033[8;1;15t" which means row is 1 and col is 15 (unit: size of ONE character) */
rt_memset(row_s,0,4);
rt_memset(col_s,0,4);
cnt1 = 0;
while(cnt1 < _TIO_BUFLEN && _tio_buf[cnt1] != ';')
{
cnt1++;
}
cnt2 = ++cnt1;
while(cnt2 < _TIO_BUFLEN && _tio_buf[cnt2] != ';')
{
cnt2++;
}
p = row_s;
while(cnt1 < cnt2)
{
*p++ = _tio_buf[cnt1++];
}
p = col_s;
cnt2++;
cnt3 = rt_strlen(_tio_buf) - 1;
while(cnt2 < cnt3)
{
*p++ = _tio_buf[cnt2++];
}
/* load the window size date */
p_winsize->ws_col = atoi(col_s);
p_winsize->ws_row = atoi(row_s);
#undef _TIO_BUFLEN
}
p_winsize->ws_xpixel = 0;/* unused */
p_winsize->ws_ypixel = 0;/* unused */
}
break;
case FIONREAD:
{
rt_size_t recved = 0;
rt_base_t level;
level = rt_spin_lock_irqsave(&(serial->spinlock));
recved = _serial_fifo_calc_recved_len(serial);
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
*(rt_size_t *)args = recved;
}
break;
#endif /* RT_USING_POSIX_STDIO */
default :
/* control device */
ret = serial->ops->control(serial, cmd, args);
break;
}
return ret;
}看似控制操作很多,实际上去掉几个目前学习来说无用宏包裹的部分看, 仅仅有那么几个入口:
1. 挂起/恢复串口:虽然写了这么个标志,但是没啥用,因为这标志压根没用到
2. 设置串口参数入口:功能同init中,个人理解为打开串口前的操作入口,即find,设置串口参数,打开串口
3. RT_DEVICE_CTRL_NOTIFY_SET:不知道什么情况下需要使用这种方式上报信息,tx_complete完全可以满足要求
4. RT_DEVICE_CTRL_CONSOLE_OFLAG:不明所以的实现,或许是历史遗留吧,得梳理历史提交记录才能确认
5. 其他入口:标准框架实现不了,驱动独有的设置入口,对应接口为驱动层的control
串口关闭操作
static rt_err_t rt_serial_close(struct rt_device *dev)
{
struct rt_serial_device *serial;
RT_ASSERT(dev != RT_NULL);
serial = (struct rt_serial_device *)dev;
/* this device has more reference count */
if (dev->ref_count > 1) return RT_EOK;
if (dev->open_flag & RT_DEVICE_FLAG_INT_RX)
{
struct rt_serial_rx_fifo* rx_fifo;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX);
dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX;
rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_free(rx_fifo);
serial->serial_rx = RT_NULL;
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
{
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_RX);
dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX;
if (serial->config.bufsz == 0)
{
struct rt_serial_rx_dma* rx_dma;
rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx;
RT_ASSERT(rx_dma != RT_NULL);
rt_free(rx_dma);
}
else
{
struct rt_serial_rx_fifo* rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_free(rx_fifo);
}
serial->serial_rx = RT_NULL;
}
#endif /* RT_SERIAL_USING_DMA */
if (dev->open_flag & RT_DEVICE_FLAG_INT_TX)
{
struct rt_serial_tx_fifo* tx_fifo;
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX);
dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX;
tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
RT_ASSERT(tx_fifo != RT_NULL);
rt_free(tx_fifo);
serial->serial_tx = RT_NULL;
/* configure low level device */
}
#ifdef RT_SERIAL_USING_DMA
else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
{
struct rt_serial_tx_dma* tx_dma;
/* configure low level device */
serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_TX);
dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX;
tx_dma = (struct rt_serial_tx_dma*)serial->serial_tx;
RT_ASSERT(tx_dma != RT_NULL);
rt_data_queue_deinit(&(tx_dma->data_queue));
rt_free(tx_dma);
serial->serial_tx = RT_NULL;
}
#endif /* RT_SERIAL_USING_DMA */
serial->ops->control(serial, RT_DEVICE_CTRL_CLOSE, RT_NULL);
dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED;
return RT_EOK;
}关闭操作,就是关闭硬件,销毁资源,而从实际代码上看,这入口也就干了这么个事。但是需要注意的是,他只有在所有打开这个串口的应用都关闭了串口后才去操作。
Add on
看了那么多,实际上我们漏了一个内容,接收时,数据是怎么送到buffer里的,发送时,完成量是怎么发出的,这一系列功能,貌似都没有在上面的分析中体现。而这部分代码,实际上在serial.c里面有写,具体实现如下:
/* ISR for serial interrupt */
void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
{
switch (event & 0xff)
{
case RT_SERIAL_EVENT_RX_IND:
{
int ch = -1;
rt_base_t level;
struct rt_serial_rx_fifo* rx_fifo;
/* interrupt mode receive */
rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
while (1)
{
ch = serial->ops->getc(serial);
if (ch == -1) break;
/* disable interrupt */
level = rt_spin_lock_irqsave(&(serial->spinlock));
rx_fifo->buffer[rx_fifo->put_index] = ch;
rx_fifo->put_index += 1;
if (rx_fifo->put_index >= serial->config.bufsz) rx_fifo->put_index = 0;
/* if the next position is read index, discard this 'read char' */
if (rx_fifo->put_index == rx_fifo->get_index)
{
rx_fifo->get_index += 1;
rx_fifo->is_full = RT_TRUE;
if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0;
_serial_check_buffer_size();
}
/* enable interrupt */
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
}
/**
* Invoke callback.
* First try notify if any, and if notify is existed, rx_indicate()
* is not callback. This separate the priority and makes the reuse
* of same serial device reasonable for RT console.
*/
if (serial->rx_notify.notify)
{
serial->rx_notify.notify(serial->rx_notify.dev);
}
else if (serial->parent.rx_indicate != RT_NULL)
{
rt_size_t rx_length;
/* get rx length */
level = rt_spin_lock_irqsave(&(serial->spinlock));
rx_length = (rx_fifo->put_index >= rx_fifo->get_index)? (rx_fifo->put_index - rx_fifo->get_index):
(serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index));
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
if (rx_length)
{
serial->parent.rx_indicate(&serial->parent, rx_length);
}
}
break;
}
case RT_SERIAL_EVENT_TX_DONE:
{
struct rt_serial_tx_fifo* tx_fifo;
tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx;
rt_completion_done(&(tx_fifo->completion));
break;
}
#ifdef RT_SERIAL_USING_DMA
case RT_SERIAL_EVENT_TX_DMADONE:
{
const void *data_ptr;
rt_size_t data_size;
const void *last_data_ptr;
struct rt_serial_tx_dma *tx_dma;
tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx;
rt_data_queue_pop(&(tx_dma->data_queue), &last_data_ptr, &data_size, 0);
if (rt_data_queue_peek(&(tx_dma->data_queue), &data_ptr, &data_size) == RT_EOK)
{
/* transmit next data node */
tx_dma->activated = RT_TRUE;
serial->ops->dma_transmit(serial, (rt_uint8_t *)data_ptr, data_size, RT_SERIAL_DMA_TX);
}
else
{
tx_dma->activated = RT_FALSE;
}
/* invoke callback */
if (serial->parent.tx_complete != RT_NULL)
{
serial->parent.tx_complete(&serial->parent, (void*)last_data_ptr);
}
break;
}
case RT_SERIAL_EVENT_RX_DMADONE:
{
int length;
rt_base_t level;
/* get DMA rx length */
length = (event & (~0xff)) >> 8;
if (serial->config.bufsz == 0)
{
struct rt_serial_rx_dma* rx_dma;
rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx;
RT_ASSERT(rx_dma != RT_NULL);
RT_ASSERT(serial->parent.rx_indicate != RT_NULL);
serial->parent.rx_indicate(&(serial->parent), length);
rx_dma->activated = RT_FALSE;
}
else
{
/* disable interrupt */
level = rt_spin_lock_irqsave(&(serial->spinlock));
/* update fifo put index */
rt_dma_recv_update_put_index(serial, length);
/* calculate received total length */
length = rt_dma_calc_recved_len(serial);
/* enable interrupt */
rt_spin_unlock_irqrestore(&(serial->spinlock), level);
/* invoke callback */
if (serial->parent.rx_indicate != RT_NULL)
{
serial->parent.rx_indicate(&(serial->parent), length);
}
}
break;
}
#endif /* RT_SERIAL_USING_DMA */
}
}这个函数,需要在驱动函数对应的中断中去调用,以便满足串口框架上的各种实现。
总结
至此,最初版本的串口框架已经分析完毕,而分析完这个框架,我们可以以以下方式实现串口驱动的适配,通过在驱动中构建 struct rt_serial_device,调用 rt_hw_serial_register实现设备注册,在不同的中断中调用rt_hw_serial_isr并给予不同参数实现数据处理的方式实现串口适配。
我要赚赏金
