前言
RTT存在两版串口框架,而从bsp目录的适配情况看,两版串口框架都有新bsp适配使用,因此两套框架都需要学习。
由于V2相比较于V1,改动还挺多,因此学习时,将两套框架分开学习。
代码解析
V1框架的代码主要放置于/components/drivers/serial/serial.c中,因此学习也是围绕该文件而展开的。
串口注册入口
串口注册入口其实挺好找,在RTT设备框架里,所有设备都是基于device框架实现的,因此只需要在框架文件中搜索 struct rt_device_ops ,再反查便可定位到注册入口,具体注册入口如下:
#ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops serial_ops = { rt_serial_init, rt_serial_open, rt_serial_close, rt_serial_read, rt_serial_write, rt_serial_control }; #endif /* * serial register */ rt_err_t rt_hw_serial_register(struct rt_serial_device *serial, const char *name, rt_uint32_t flag, void *data) { rt_err_t ret; struct rt_device *device; RT_ASSERT(serial != RT_NULL); rt_spin_lock_init(&(serial->spinlock)); device = &(serial->parent); device->type = RT_Device_Class_Char; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; #ifdef RT_USING_DEVICE_OPS device->ops = &serial_ops; #else device->init = rt_serial_init; device->open = rt_serial_open; device->close = rt_serial_close; device->read = rt_serial_read; device->write = rt_serial_write; device->control = rt_serial_control; #endif device->user_data = data; /* register a character device */ ret = rt_device_register(device, name, flag); #ifdef RT_USING_POSIX_STDIO /* set fops */ device->fops = &_serial_fops; #endif #if defined(RT_USING_SMART) rt_hw_serial_register_tty(serial); #endif return ret; }
观察注册入口,其实就可以发现,里面主要干了这么几件事,初始化自旋锁(作用得后面分析才清楚),标准的设备注册操作,最后是特定功能的特定入口注册,由于现在所使用的平台是非RTSmart的平台,因此关于RT_USING_SMART也就不去分析了。
串口初始化入口
static rt_err_t rt_serial_init(struct rt_device *dev) { rt_err_t result = RT_EOK; struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; /* initialize rx/tx */ serial->serial_rx = RT_NULL; serial->serial_tx = RT_NULL; rt_memset(&serial->rx_notify, 0, sizeof(struct rt_device_notify)); /* apply configuration */ if (serial->ops->configure) result = serial->ops->configure(serial, &serial->config); return result; }
从初始化入口上看,实际上就是提前初始化串口所需要的变量,以防后面逻辑跑乱。另外,调用了驱动层的configure入口,将当前串口的配置信息传递至驱动层实现。
串口打开入口
static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag) { rt_uint16_t stream_flag = 0; struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; LOG_D("open serial device: 0x%08x with open flag: 0x%04x", dev, oflag); /* check device flag with the open flag */ if ((oflag & RT_DEVICE_FLAG_DMA_RX) && !(dev->flag & RT_DEVICE_FLAG_DMA_RX)) return -RT_EIO; if ((oflag & RT_DEVICE_FLAG_DMA_TX) && !(dev->flag & RT_DEVICE_FLAG_DMA_TX)) return -RT_EIO; if ((oflag & RT_DEVICE_FLAG_INT_RX) && !(dev->flag & RT_DEVICE_FLAG_INT_RX)) return -RT_EIO; if ((oflag & RT_DEVICE_FLAG_INT_TX) && !(dev->flag & RT_DEVICE_FLAG_INT_TX)) return -RT_EIO; /* keep steam flag */ if ((oflag & RT_DEVICE_FLAG_STREAM) || (dev->open_flag & RT_DEVICE_FLAG_STREAM)) stream_flag = RT_DEVICE_FLAG_STREAM; /* get open flags */ dev->open_flag = oflag & 0xff; #ifdef RT_USING_PINCTRL /* initialize iomux in DM */ rt_pin_ctrl_confs_apply_by_name(dev, RT_NULL); #endif /* initialize the Rx/Tx structure according to open flag */ if (serial->serial_rx == RT_NULL) { if (oflag & RT_DEVICE_FLAG_INT_RX) { struct rt_serial_rx_fifo* rx_fifo; rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) + serial->config.bufsz); RT_ASSERT(rx_fifo != RT_NULL); rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1); rt_memset(rx_fifo->buffer, 0, serial->config.bufsz); rx_fifo->put_index = 0; rx_fifo->get_index = 0; rx_fifo->is_full = RT_FALSE; serial->serial_rx = rx_fifo; dev->open_flag |= RT_DEVICE_FLAG_INT_RX; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_RX); } #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_RX) { if (serial->config.bufsz == 0) { struct rt_serial_rx_dma* rx_dma; rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma)); RT_ASSERT(rx_dma != RT_NULL); rx_dma->activated = RT_FALSE; serial->serial_rx = rx_dma; } else { struct rt_serial_rx_fifo* rx_fifo; rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) + serial->config.bufsz); RT_ASSERT(rx_fifo != RT_NULL); rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1); rt_memset(rx_fifo->buffer, 0, serial->config.bufsz); rx_fifo->put_index = 0; rx_fifo->get_index = 0; rx_fifo->is_full = RT_FALSE; serial->serial_rx = rx_fifo; /* configure fifo address and length to low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX); } dev->open_flag |= RT_DEVICE_FLAG_DMA_RX; } #endif /* RT_SERIAL_USING_DMA */ else { serial->serial_rx = RT_NULL; } } else { if (oflag & RT_DEVICE_FLAG_INT_RX) dev->open_flag |= RT_DEVICE_FLAG_INT_RX; #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_RX) dev->open_flag |= RT_DEVICE_FLAG_DMA_RX; #endif /* RT_SERIAL_USING_DMA */ } if (serial->serial_tx == RT_NULL) { if (oflag & RT_DEVICE_FLAG_INT_TX) { struct rt_serial_tx_fifo *tx_fifo; tx_fifo = (struct rt_serial_tx_fifo*) rt_malloc(sizeof(struct rt_serial_tx_fifo)); RT_ASSERT(tx_fifo != RT_NULL); rt_completion_init(&(tx_fifo->completion)); serial->serial_tx = tx_fifo; dev->open_flag |= RT_DEVICE_FLAG_INT_TX; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_SET_INT, (void *)RT_DEVICE_FLAG_INT_TX); } #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_TX) { struct rt_serial_tx_dma* tx_dma; tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma)); RT_ASSERT(tx_dma != RT_NULL); tx_dma->activated = RT_FALSE; rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL); serial->serial_tx = tx_dma; dev->open_flag |= RT_DEVICE_FLAG_DMA_TX; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_DEVICE_FLAG_DMA_TX); } #endif /* RT_SERIAL_USING_DMA */ else { serial->serial_tx = RT_NULL; } } else { if (oflag & RT_DEVICE_FLAG_INT_TX) dev->open_flag |= RT_DEVICE_FLAG_INT_TX; #ifdef RT_SERIAL_USING_DMA else if (oflag & RT_DEVICE_FLAG_DMA_TX) dev->open_flag |= RT_DEVICE_FLAG_DMA_TX; #endif /* RT_SERIAL_USING_DMA */ } /* set stream flag */ dev->open_flag |= stream_flag; return RT_EOK; }
乍一看,这函数写的实在是长,完全违背了不超过屏幕一页的规则。但是细看,会发现,这个函数也就做了以下几个事情:
1. 先是检查打开方式与对应串口支持的方式是否匹配。若不匹配,则直接返回错误信息,若匹配,则继续后续操作。其中,流模式比较特殊,具体操作为不匹配,则不保存对应功能,原因稍后给出。
2. 根据serial_rx这个指针是否被赋值,决定是否需要打开RX功能,其中,不同打开方式操作方式有细微差异
3. 根据serial_tx这个指针是否被赋值,决定是否需要打开TX功能,其中,不同打开方式的操作方式有细微差异
4. 存储流模式标记
串口读操作
/* * Serial poll routines */ rt_inline int _serial_poll_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length) { int ch; int size; RT_ASSERT(serial != RT_NULL); size = length; while (length) { ch = serial->ops->getc(serial); if (ch == -1) break; *data = ch; data ++; length --; if(serial->parent.open_flag & RT_DEVICE_FLAG_STREAM) { if (ch == '\n') break; } } return size - length; } /* * Serial DMA routines */ rt_inline int _serial_dma_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length) { rt_base_t level; RT_ASSERT((serial != RT_NULL) && (data != RT_NULL)); level = rt_spin_lock_irqsave(&(serial->spinlock)); if (serial->config.bufsz == 0) { int result = RT_EOK; struct rt_serial_rx_dma *rx_dma; rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx; RT_ASSERT(rx_dma != RT_NULL); if (rx_dma->activated != RT_TRUE) { rx_dma->activated = RT_TRUE; RT_ASSERT(serial->ops->dma_transmit != RT_NULL); serial->ops->dma_transmit(serial, data, length, RT_SERIAL_DMA_RX); } else result = -RT_EBUSY; rt_spin_unlock_irqrestore(&(serial->spinlock), level); if (result == RT_EOK) return length; rt_set_errno(result); return 0; } else { struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx; rt_size_t recv_len = 0, fifo_recved_len = rt_dma_calc_recved_len(serial); RT_ASSERT(rx_fifo != RT_NULL); if (length < (int)fifo_recved_len) recv_len = length; else recv_len = fifo_recved_len; if (rx_fifo->get_index + recv_len < serial->config.bufsz) rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, recv_len); else { rt_memcpy(data, rx_fifo->buffer + rx_fifo->get_index, serial->config.bufsz - rx_fifo->get_index); rt_memcpy(data + serial->config.bufsz - rx_fifo->get_index, rx_fifo->buffer, recv_len + rx_fifo->get_index - serial->config.bufsz); } rt_dma_recv_update_get_index(serial, recv_len); rt_spin_unlock_irqrestore(&(serial->spinlock), level); return recv_len; } } /* * Serial interrupt routines */ rt_inline int _serial_int_rx(struct rt_serial_device *serial, rt_uint8_t *data, int length) { int size; struct rt_serial_rx_fifo* rx_fifo; RT_ASSERT(serial != RT_NULL); size = length; rx_fifo = (struct rt_serial_rx_fifo*) serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); /* read from software FIFO */ while (length) { int ch; rt_base_t level; /* disable interrupt */ level = rt_spin_lock_irqsave(&(serial->spinlock)); /* there's no data: */ if ((rx_fifo->get_index == rx_fifo->put_index) && (rx_fifo->is_full == RT_FALSE)) { /* no data, enable interrupt and break out */ rt_spin_unlock_irqrestore(&(serial->spinlock), level); break; } /* otherwise there's the data: */ ch = rx_fifo->buffer[rx_fifo->get_index]; rx_fifo->get_index += 1; if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0; if (rx_fifo->is_full == RT_TRUE) { rx_fifo->is_full = RT_FALSE; } /* enable interrupt */ rt_spin_unlock_irqrestore(&(serial->spinlock), level); *data = ch & 0xff; data ++; length --; } return size - length; } static rt_ssize_t rt_serial_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; if (dev->open_flag & RT_DEVICE_FLAG_INT_RX) { return _serial_int_rx(serial, (rt_uint8_t *)buffer, size); } #ifdef RT_SERIAL_USING_DMA else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX) { return _serial_dma_rx(serial, (rt_uint8_t *)buffer, size); } #endif /* RT_SERIAL_USING_DMA */ return _serial_poll_rx(serial, (rt_uint8_t *)buffer, size); }
从这里面可以看到,串口框架实现了三种读取方式,三种读取方式的具体实现如下:
1. 中断接收(_serial_int_rx):是用中断方式去驱动读取,而由于存在buffer操作,因此需要自旋锁的保护措施,以防多方操作buffer导致数据异常。
2. dma接收(_serial_dma_rx):里面操作根据不同的dma类型,存在不同的操作。其分为两种实现,一种为dma自己维护buffer时,直接调用驱动提供的dma_transmit接口读取数据,另一种与中断方式类似,直接读取buffer中的缓存。两种读取方式都需要自旋锁保护(暂时不理解为何dma维护buffre时,也需要自旋锁保护)。
3. 轮询接收(_serial_poll_rx):此方法使用轮询的方式直接从驱动中读取数据,因此实现中直接对接驱动中的getc,且没有自旋锁保护的措施。而在这实现中,可以发现,所谓的流模式,即为遇到换行符时退出读取。
串口写操作
rt_inline int _serial_poll_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length) { int size; RT_ASSERT(serial != RT_NULL); size = length; while (length) { /* * to be polite with serial console add a line feed * to the carriage return character */ if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)) { serial->ops->putc(serial, '\r'); } serial->ops->putc(serial, *data); ++ data; -- length; } return size - length; } rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length) { rt_base_t level; rt_err_t result; struct rt_serial_tx_dma *tx_dma; tx_dma = (struct rt_serial_tx_dma*)(serial->serial_tx); result = rt_data_queue_push(&(tx_dma->data_queue), data, length, RT_WAITING_FOREVER); if (result == RT_EOK) { level = rt_spin_lock_irqsave(&(serial->spinlock)); if (tx_dma->activated != RT_TRUE) { tx_dma->activated = RT_TRUE; rt_spin_unlock_irqrestore(&(serial->spinlock), level); /* make a DMA transfer */ serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX); } else { rt_spin_unlock_irqrestore(&(serial->spinlock), level); } return length; } else { rt_set_errno(result); return 0; } } rt_inline int _serial_int_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length) { int size; struct rt_serial_tx_fifo *tx; RT_ASSERT(serial != RT_NULL); size = length; tx = (struct rt_serial_tx_fifo*) serial->serial_tx; RT_ASSERT(tx != RT_NULL); while (length) { /* * to be polite with serial console add a line feed * to the carriage return character */ if (*data == '\n' && (serial->parent.open_flag & RT_DEVICE_FLAG_STREAM)) { if (serial->ops->putc(serial, '\r') == -1) { rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER); continue; } } while (serial->ops->putc(serial, *(char*)data) == -1) { rt_completion_wait(&(tx->completion), RT_WAITING_FOREVER); } data ++; length --; } return size - length; } static rt_ssize_t rt_serial_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); if (size == 0) return 0; serial = (struct rt_serial_device *)dev; if (dev->open_flag & RT_DEVICE_FLAG_INT_TX) { return _serial_int_tx(serial, (const rt_uint8_t *)buffer, size); } #ifdef RT_SERIAL_USING_DMA else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX) { return _serial_dma_tx(serial, (const rt_uint8_t *)buffer, size); } #endif /* RT_SERIAL_USING_DMA */ else { return _serial_poll_tx(serial, (const rt_uint8_t *)buffer, size); } }
串口写的函数结构,大致上和串口读一致,因此理解起来也是一样的思路,具体如下:
1. 中断发送(_serial_int_tx):中断发送,其实实现很简单,就是调用驱动提供的putc接口,但是需要注意的是,需要收到驱动回复的完成量tx->completion信息再进行下一步的写。另外中断读不加流操作,中断写加流操作,这点完全看不懂。
2. dma发送(_serial_dma_tx):DMA方式的写,其实实现不止于此,但是放在这全部写,又有些多余,因此这里仅写这部分的思路,这部分的思路为,先将所有数据存储至一个叫tx_dma->data_queue的队列中,然后调用dma_transmit去实现数据发送。而我提到的后续部分,实际上是因为需要有DMA发送完成信息,以及由于dma发送有长度限制,因此在接收到完成信息后需要判断是否还有数据要发送,是否需要告诉上层数据发送完毕。至于这部分,晚点贴出。
3. 轮询发送(_serial_poll_tx):这个方法与中断传输一致,可能由于是轮询方式直接发送,不能像中断那样在中断产生前MCU干别的事,因此就没有加完成量的处理了。
串口控制操作
static rt_err_t rt_serial_control(struct rt_device *dev, int cmd, void *args) { rt_err_t ret = RT_EOK; struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; switch (cmd) { case RT_DEVICE_CTRL_SUSPEND: /* suspend device */ dev->flag |= RT_DEVICE_FLAG_SUSPENDED; break; case RT_DEVICE_CTRL_RESUME: /* resume device */ dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED; break; case RT_DEVICE_CTRL_CONFIG: if (args) { struct serial_configure *pconfig = (struct serial_configure *) args; if (pconfig->bufsz != serial->config.bufsz && serial->parent.ref_count) { /*can not change buffer size*/ return -RT_EBUSY; } /* set serial configure */ serial->config = *pconfig; if (serial->parent.ref_count) { /* serial device has been opened, to configure it */ serial->ops->configure(serial, (struct serial_configure *) args); } } break; case RT_DEVICE_CTRL_NOTIFY_SET: if (args) { rt_memcpy(&serial->rx_notify, args, sizeof(struct rt_device_notify)); } break; case RT_DEVICE_CTRL_CONSOLE_OFLAG: if (args) { *(rt_uint16_t*)args = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM; } break; #ifdef RT_USING_POSIX_STDIO #if defined(RT_USING_POSIX_TERMIOS) case TCGETA: case TCGETS: { struct termios *tio, tmp; if (cmd == TCGETS) { tio = (struct termios*)args; } else { tio = &tmp; } if (tio == RT_NULL) return -RT_EINVAL; tio->c_iflag = 0; tio->c_oflag = 0; tio->c_lflag = 0; /* update oflag for console device */ if (rt_console_get_device() == dev) tio->c_oflag = OPOST | ONLCR; /* set cflag */ tio->c_cflag = 0; if (serial->config.data_bits == DATA_BITS_5) tio->c_cflag = CS5; else if (serial->config.data_bits == DATA_BITS_6) tio->c_cflag = CS6; else if (serial->config.data_bits == DATA_BITS_7) tio->c_cflag = CS7; else if (serial->config.data_bits == DATA_BITS_8) tio->c_cflag = CS8; if (serial->config.stop_bits == STOP_BITS_2) tio->c_cflag |= CSTOPB; if (serial->config.parity == PARITY_EVEN) tio->c_cflag |= PARENB; else if (serial->config.parity == PARITY_ODD) tio->c_cflag |= (PARODD | PARENB); cfsetospeed(tio, _get_speed(serial->config.baud_rate)); if (cmd == TCGETA) { _termios_to_termio(tio, args); } } break; case TCSETAW: case TCSETAF: case TCSETA: case TCSETSW: case TCSETSF: case TCSETS: { int baudrate; struct serial_configure config; struct termios *tio, tmp; if ((cmd >= TCSETA) && (cmd <= TCSETA + 2)) { _termio_to_termios(args, &tmp); tio = &tmp; } else { tio = (struct termios*)args; } if (tio == RT_NULL) return -RT_EINVAL; config = serial->config; baudrate = _get_baudrate(cfgetospeed(tio)); config.baud_rate = baudrate; switch (tio->c_cflag & CSIZE) { case CS5: config.data_bits = DATA_BITS_5; break; case CS6: config.data_bits = DATA_BITS_6; break; case CS7: config.data_bits = DATA_BITS_7; break; default: config.data_bits = DATA_BITS_8; break; } if (tio->c_cflag & CSTOPB) config.stop_bits = STOP_BITS_2; else config.stop_bits = STOP_BITS_1; if (tio->c_cflag & PARENB) { if (tio->c_cflag & PARODD) config.parity = PARITY_ODD; else config.parity = PARITY_EVEN; } else config.parity = PARITY_NONE; serial->ops->configure(serial, &config); } break; #ifndef RT_USING_TTY case TCFLSH: { int queue = (int)(rt_ubase_t)args; _tc_flush(serial, queue); } break; case TCXONC: break; #endif /*RT_USING_TTY*/ #endif /*RT_USING_POSIX_TERMIOS*/ case TIOCSWINSZ: { struct winsize* p_winsize; p_winsize = (struct winsize*)args; rt_kprintf("\x1b[8;%d;%dt", p_winsize->ws_col, p_winsize->ws_row); } break; case TIOCGWINSZ: { struct winsize* p_winsize; p_winsize = (struct winsize*)args; if(rt_thread_self() != rt_thread_find("tshell")) { /* only can be used in tshell thread; otherwise, return default size */ p_winsize->ws_col = 80; p_winsize->ws_row = 24; } else { #include <shell.h> #define _TIO_BUFLEN 20 char _tio_buf[_TIO_BUFLEN]; unsigned char cnt1, cnt2, cnt3, i; char row_s[4], col_s[4]; char *p; rt_memset(_tio_buf, 0, _TIO_BUFLEN); /* send the command to terminal for getting the window size of the terminal */ rt_kprintf("\033[18t"); /* waiting for the response from the terminal */ i = 0; while(i < _TIO_BUFLEN) { _tio_buf[i] = finsh_getchar(); if(_tio_buf[i] != 't') { i ++; } else { break; } } if(i == _TIO_BUFLEN) { /* buffer overloaded, and return default size */ p_winsize->ws_col = 80; p_winsize->ws_row = 24; break; } /* interpreting data eg: "\033[8;1;15t" which means row is 1 and col is 15 (unit: size of ONE character) */ rt_memset(row_s,0,4); rt_memset(col_s,0,4); cnt1 = 0; while(cnt1 < _TIO_BUFLEN && _tio_buf[cnt1] != ';') { cnt1++; } cnt2 = ++cnt1; while(cnt2 < _TIO_BUFLEN && _tio_buf[cnt2] != ';') { cnt2++; } p = row_s; while(cnt1 < cnt2) { *p++ = _tio_buf[cnt1++]; } p = col_s; cnt2++; cnt3 = rt_strlen(_tio_buf) - 1; while(cnt2 < cnt3) { *p++ = _tio_buf[cnt2++]; } /* load the window size date */ p_winsize->ws_col = atoi(col_s); p_winsize->ws_row = atoi(row_s); #undef _TIO_BUFLEN } p_winsize->ws_xpixel = 0;/* unused */ p_winsize->ws_ypixel = 0;/* unused */ } break; case FIONREAD: { rt_size_t recved = 0; rt_base_t level; level = rt_spin_lock_irqsave(&(serial->spinlock)); recved = _serial_fifo_calc_recved_len(serial); rt_spin_unlock_irqrestore(&(serial->spinlock), level); *(rt_size_t *)args = recved; } break; #endif /* RT_USING_POSIX_STDIO */ default : /* control device */ ret = serial->ops->control(serial, cmd, args); break; } return ret; }
看似控制操作很多,实际上去掉几个目前学习来说无用宏包裹的部分看, 仅仅有那么几个入口:
1. 挂起/恢复串口:虽然写了这么个标志,但是没啥用,因为这标志压根没用到
2. 设置串口参数入口:功能同init中,个人理解为打开串口前的操作入口,即find,设置串口参数,打开串口
3. RT_DEVICE_CTRL_NOTIFY_SET:不知道什么情况下需要使用这种方式上报信息,tx_complete完全可以满足要求
4. RT_DEVICE_CTRL_CONSOLE_OFLAG:不明所以的实现,或许是历史遗留吧,得梳理历史提交记录才能确认
5. 其他入口:标准框架实现不了,驱动独有的设置入口,对应接口为驱动层的control
串口关闭操作
static rt_err_t rt_serial_close(struct rt_device *dev) { struct rt_serial_device *serial; RT_ASSERT(dev != RT_NULL); serial = (struct rt_serial_device *)dev; /* this device has more reference count */ if (dev->ref_count > 1) return RT_EOK; if (dev->open_flag & RT_DEVICE_FLAG_INT_RX) { struct rt_serial_rx_fifo* rx_fifo; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_RX); dev->open_flag &= ~RT_DEVICE_FLAG_INT_RX; rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); rt_free(rx_fifo); serial->serial_rx = RT_NULL; } #ifdef RT_SERIAL_USING_DMA else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX) { /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_RX); dev->open_flag &= ~RT_DEVICE_FLAG_DMA_RX; if (serial->config.bufsz == 0) { struct rt_serial_rx_dma* rx_dma; rx_dma = (struct rt_serial_rx_dma*)serial->serial_rx; RT_ASSERT(rx_dma != RT_NULL); rt_free(rx_dma); } else { struct rt_serial_rx_fifo* rx_fifo; rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); rt_free(rx_fifo); } serial->serial_rx = RT_NULL; } #endif /* RT_SERIAL_USING_DMA */ if (dev->open_flag & RT_DEVICE_FLAG_INT_TX) { struct rt_serial_tx_fifo* tx_fifo; serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void*)RT_DEVICE_FLAG_INT_TX); dev->open_flag &= ~RT_DEVICE_FLAG_INT_TX; tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx; RT_ASSERT(tx_fifo != RT_NULL); rt_free(tx_fifo); serial->serial_tx = RT_NULL; /* configure low level device */ } #ifdef RT_SERIAL_USING_DMA else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX) { struct rt_serial_tx_dma* tx_dma; /* configure low level device */ serial->ops->control(serial, RT_DEVICE_CTRL_CLR_INT, (void *) RT_DEVICE_FLAG_DMA_TX); dev->open_flag &= ~RT_DEVICE_FLAG_DMA_TX; tx_dma = (struct rt_serial_tx_dma*)serial->serial_tx; RT_ASSERT(tx_dma != RT_NULL); rt_data_queue_deinit(&(tx_dma->data_queue)); rt_free(tx_dma); serial->serial_tx = RT_NULL; } #endif /* RT_SERIAL_USING_DMA */ serial->ops->control(serial, RT_DEVICE_CTRL_CLOSE, RT_NULL); dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED; return RT_EOK; }
关闭操作,就是关闭硬件,销毁资源,而从实际代码上看,这入口也就干了这么个事。但是需要注意的是,他只有在所有打开这个串口的应用都关闭了串口后才去操作。
Add on
看了那么多,实际上我们漏了一个内容,接收时,数据是怎么送到buffer里的,发送时,完成量是怎么发出的,这一系列功能,貌似都没有在上面的分析中体现。而这部分代码,实际上在serial.c里面有写,具体实现如下:
/* ISR for serial interrupt */ void rt_hw_serial_isr(struct rt_serial_device *serial, int event) { switch (event & 0xff) { case RT_SERIAL_EVENT_RX_IND: { int ch = -1; rt_base_t level; struct rt_serial_rx_fifo* rx_fifo; /* interrupt mode receive */ rx_fifo = (struct rt_serial_rx_fifo*)serial->serial_rx; RT_ASSERT(rx_fifo != RT_NULL); while (1) { ch = serial->ops->getc(serial); if (ch == -1) break; /* disable interrupt */ level = rt_spin_lock_irqsave(&(serial->spinlock)); rx_fifo->buffer[rx_fifo->put_index] = ch; rx_fifo->put_index += 1; if (rx_fifo->put_index >= serial->config.bufsz) rx_fifo->put_index = 0; /* if the next position is read index, discard this 'read char' */ if (rx_fifo->put_index == rx_fifo->get_index) { rx_fifo->get_index += 1; rx_fifo->is_full = RT_TRUE; if (rx_fifo->get_index >= serial->config.bufsz) rx_fifo->get_index = 0; _serial_check_buffer_size(); } /* enable interrupt */ rt_spin_unlock_irqrestore(&(serial->spinlock), level); } /** * Invoke callback. * First try notify if any, and if notify is existed, rx_indicate() * is not callback. This separate the priority and makes the reuse * of same serial device reasonable for RT console. */ if (serial->rx_notify.notify) { serial->rx_notify.notify(serial->rx_notify.dev); } else if (serial->parent.rx_indicate != RT_NULL) { rt_size_t rx_length; /* get rx length */ level = rt_spin_lock_irqsave(&(serial->spinlock)); rx_length = (rx_fifo->put_index >= rx_fifo->get_index)? (rx_fifo->put_index - rx_fifo->get_index): (serial->config.bufsz - (rx_fifo->get_index - rx_fifo->put_index)); rt_spin_unlock_irqrestore(&(serial->spinlock), level); if (rx_length) { serial->parent.rx_indicate(&serial->parent, rx_length); } } break; } case RT_SERIAL_EVENT_TX_DONE: { struct rt_serial_tx_fifo* tx_fifo; tx_fifo = (struct rt_serial_tx_fifo*)serial->serial_tx; rt_completion_done(&(tx_fifo->completion)); break; } #ifdef RT_SERIAL_USING_DMA case RT_SERIAL_EVENT_TX_DMADONE: { const void *data_ptr; rt_size_t data_size; const void *last_data_ptr; struct rt_serial_tx_dma *tx_dma; tx_dma = (struct rt_serial_tx_dma*) serial->serial_tx; rt_data_queue_pop(&(tx_dma->data_queue), &last_data_ptr, &data_size, 0); if (rt_data_queue_peek(&(tx_dma->data_queue), &data_ptr, &data_size) == RT_EOK) { /* transmit next data node */ tx_dma->activated = RT_TRUE; serial->ops->dma_transmit(serial, (rt_uint8_t *)data_ptr, data_size, RT_SERIAL_DMA_TX); } else { tx_dma->activated = RT_FALSE; } /* invoke callback */ if (serial->parent.tx_complete != RT_NULL) { serial->parent.tx_complete(&serial->parent, (void*)last_data_ptr); } break; } case RT_SERIAL_EVENT_RX_DMADONE: { int length; rt_base_t level; /* get DMA rx length */ length = (event & (~0xff)) >> 8; if (serial->config.bufsz == 0) { struct rt_serial_rx_dma* rx_dma; rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx; RT_ASSERT(rx_dma != RT_NULL); RT_ASSERT(serial->parent.rx_indicate != RT_NULL); serial->parent.rx_indicate(&(serial->parent), length); rx_dma->activated = RT_FALSE; } else { /* disable interrupt */ level = rt_spin_lock_irqsave(&(serial->spinlock)); /* update fifo put index */ rt_dma_recv_update_put_index(serial, length); /* calculate received total length */ length = rt_dma_calc_recved_len(serial); /* enable interrupt */ rt_spin_unlock_irqrestore(&(serial->spinlock), level); /* invoke callback */ if (serial->parent.rx_indicate != RT_NULL) { serial->parent.rx_indicate(&(serial->parent), length); } } break; } #endif /* RT_SERIAL_USING_DMA */ } }
这个函数,需要在驱动函数对应的中断中去调用,以便满足串口框架上的各种实现。
总结
至此,最初版本的串口框架已经分析完毕,而分析完这个框架,我们可以以以下方式实现串口驱动的适配,通过在驱动中构建 struct rt_serial_device,调用 rt_hw_serial_register实现设备注册,在不同的中断中调用rt_hw_serial_isr并给予不同参数实现数据处理的方式实现串口适配。