【应用手册】QR Matrix Decomposition
QR matrix decomposition (QRD), sometimes referred to as orthogonal
matrix triangularization, is the decomposition of a matrix (A) into an
orthogonal matrix (Q) and an upper triangular matrix (R). QRD is useful
for solving least squares’ problems and simultaneous equations.
In wireless applications, there are prevalent cases where QRD is useful.
Multiple-input multiple-output (MIMO) orthogonal frequency-division
multiplexing (OFDM) systems often require small multiple matrix (for
example, 4 × 4) inversions. These systems typically use a non-recursive
technique, such as QRD. Digital predistortion (DPD) and joint detection
applications often require large single matrix (for example, 20 × 20)
inversions. DPD often also requires a recursive technique, such as the
QRD recursive least squares (QRD-RLS) algorithm, because the equations
are overspecified—matrix A has more rows than there are unknowns (N)
to calculate.an506.pdf
有奖活动 | |
---|---|
【有奖活动——B站互动赢积分】活动开启啦! | |
【有奖活动】分享技术经验,兑换京东卡 | |
话不多说,快进群! | |
请大声喊出:我要开发板! | |
【有奖活动】EEPW网站征稿正在进行时,欢迎踊跃投稿啦 | |
奖!发布技术笔记,技术评测贴换取您心仪的礼品 | |
打赏了!打赏了!打赏了! |